2.7

Date

Period

Worksheet 5.5—Partial Fractions & Logistic Growth

Show all work. No calculator unless stated.

Multiple Choice

1. The spread of a disease through a community can be modeled with the logistic equation

 $y = \frac{600}{1 + 59e^{-0.1t}}$, where y is the number of people infected after t days. How many people are infected

when the disease is spreading the fastest?

(A) 10

(B) 59

(C) 60

(D) 300

(E) 600

The spread of a disease through a community can be modeled with the logistic equation $y = \frac{0.9}{1 + 45e^{-0.15t}}$, where y is the proportion of people infected after t days. According to the model, what percentage of people in the community will not become infected?

(A) 2%

(B) 10%

(C) 15%

(D) 45%

(E) 90%

3.
$$\int_{2}^{3} \frac{3}{(x-1)(x+2)} dx =$$

(A)
$$-\frac{33}{20}$$

(B)
$$-\frac{9}{20}$$

(C)
$$\ln\left(\frac{5}{2}\right)$$

(D)
$$\ln\left(\frac{8}{5}\right)$$

(A)
$$-\frac{33}{20}$$
 (B) $-\frac{9}{20}$ (C) $\ln\left(\frac{5}{2}\right)$ (D) $\ln\left(\frac{8}{5}\right)$ (E) $\ln\left(\frac{2}{5}\right)$

4. Which of the following differential equations would produce the slope field shown below?

(A)
$$\frac{dy}{dx} = 0.01x(120 - x)$$

(B)
$$\frac{dy}{dx} = 0.01y(120 - y)$$

(A)
$$\frac{dy}{dx} = 0.01x(120 - x)$$
 (B) $\frac{dy}{dx} = 0.01y(120 - y)$ (C) $\frac{dy}{dx} = 0.01y(100 - x)$ (D) $\frac{dy}{dx} = \frac{120}{1 + 60e^{-1.2x}}$ (E) $\frac{dy}{dx} = \frac{120}{1 + 60e^{-1.2y}}$

(D)
$$\frac{dy}{dx} = \frac{120}{1 + 60e^{-1.2x}}$$

(E)
$$\frac{dy}{dx} = \frac{120}{1 + 60e^{-1.2y}}$$

- 5. The population P(t) of a species satisfies the logistic differential equation $\frac{dP}{dt} = P\left(2 \frac{P}{5000}\right)$, where the initial population is P(0) = 3000 and t is the time in years. What is $\lim_{t \to \infty} P(t)$?
 - (A) 2500
- (B) 3000
- (C)4200
- (D) 5000
- (E) 10,000

- 6. Suppose a population of wolves grows according to the logistic differential equation $\frac{dP}{dt} = 3P 0.01P^2$, where P is the number of wolves at time t, in years. Which of the following statements are true?
 - $\lim_{t \to \infty} P(t) = 300$
 - II. The growth rate of the wolf population is greatest when P = 150.
 - If P > 300, the population of wolves is increasing.
 - (A) I only
- (B) II only
- (C) I and II only
- (D) II and III only
- (E) I, II, and III

Short Answer/Free Response

Work the following on notebook paper.

- 7. Suppose the population of bears in a national park grows according to the logistic differential equation $\frac{dP}{dt} = 5P 0.002P^2$, where P is the number of bears at time t in years.
 - (a) If P(0) = 100, then $\lim_{t \to \infty} P(t) =$ _____. Sketch the graph of P(t). For what values of P is the graph of P increasing? Justify your answer.

(b) If P(0) = 1500, $\lim_{t \to \infty} P(t) =$ _____. Sketch the graph of P(t). For what values of P is the graph of P increasing? decreasing? Justify your answer.

(c) If P(0) = 3000, $\lim_{t \to \infty} P(t) =$ Sketch the graph of P(t). For what values of P is the graph of P increasing? decreasing? Justify your answer.

(d) How many bears are in the park when the population of bears is growing the fastest? Justify your answer.

- 8. (Calculator Permitted) A population of animals is modeled by a function P that satisfies the logistic differential equation $\frac{dP}{dt} = 0.01P(100 P)$, where t is measured in years.
 - (a) If P(0) = 20, solve for P as a function of t.

(b) Use your answer to (a) to find P when t = 3 years. Give exact and 3-decimal approximation.

(c) Use your answer to (a) to find t when P = 80 animals. Give exact and 3-decimal approximation.

- 9. (Calculator Permitted) The rate at which a rumor spreads through a high school of 2000 students can be modeled by the differential equation $\frac{dP}{dt} = 0.003P(2000 P)$, where P is the number of students who have heard the rumor t hours after 9AM.
 - (a) How many students have heard the rumor when it is spreading the fastest?

(b) If P(0) = 5, solve for P as a function of t.

(c) Use your answer to (b) to determine how many hours have passed when the rumor is spreading the fastest. Give exact and 3-decimal approximation.

(d) Use your answer to (b) to determine the number of people who have heard the rumor after two hours. Give exact and 3-decimal approximation.

- 10. Suppose that a population develops according to the logistic equation $\frac{dP}{dt} = 0.05P 0.0005P^2$ where t is measured in weeks.
 - (a) What is the carrying capacity/limit to growth?
 - (b) A slope field for this equation is shown below.

- I. Where are the slopes close to zero?
- II. Where are they largest?
- III. Which solutions are increasing?
- IV. Which solutions are decreasing?
- (c) Use the slope field to sketch solutions for initial populations of 20, 60, and 120.
 - I. What do these solutions have in common?
 - II. How do they differ?
 - III. Which solutions have inflection points?
 - IV. At what population level do these inflection points occur?

11. The slope field show below gives general solutions for the differential equation given by

$$\frac{dP}{dt} = 3P - 3P^2.$$

- (a) On the graph above, sketch three solution curves showing three different types of behavior for the population P.
- (b) Describe the meaning of the shape of the solution curves for the population.
 - I. Where is P increasing?
 - II. Where is P decreasing?
 - III. What happens in the long run (for large values of t)?
 - IV. Are there any inflection points? If so, where?
 - V. What do the inflection points mean for the population?

Multiple Choice II

12.
$$\int \frac{7x}{(2x-3)(x+2)} dx =$$
(A)
$$\frac{3}{2} \ln|2x-3| + 2\ln|x+2| + C$$
 (B)
$$3\ln|2x-3| + 2\ln|x+2| + C$$
 (C)
$$3\ln|2x-3| - 2\ln|x+2| + C$$
 (D)
$$-\frac{6}{(2x-3)^2} - \frac{2}{(x+2)^2} + C$$
 (E)
$$-\frac{3}{(2x-3)^2} - \frac{2}{(x+2)^2} + C$$

13.
$$\int \frac{2x}{x^2 + 3x + 2} dx =$$
(A) $\ln|x + 2| + \ln|x + 1| + C$ (B) $\ln|x + 2| + \ln|x + 1| - 3x + C$ (C) $-4\ln|x + 2| + 2\ln|x + 1| + C$ (D) $4\ln|x + 2| - 2\ln|x + 1| + C$ (E) $2\ln|x| + \frac{2}{3}x + \frac{1}{2}x^2 + C$